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Extending the Two-Dimensional FDTD Method to
Hybrid Electromagnetic Systems with Active and
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Abstract—This paper extends the finite-difference time-do-
main (FDTD) method to include distributed electromagnetic
systems with lumped elements (a hybrid system) and voltage
and current sources. FDTD equations that include nonlinear
elements like diodes and transistors are derived. Calculation of
driving-point impedance is described. Comparison of FDTD
calculated results with analytical results for several two-dimen-
sional transmission-line configurations illustrate the accuracy
of the method. FDTD results for a transistor model and a diode
are compared with SPICE calculations. The extended FDTD
method should prove useful in the design and analysis of com-
plicated distributed systems with various active, passive, linear
and nonlinear lumped electrical components,

1. INTRODUCTION

HE FDTD method, first presented by Yee in 1966

[1], numerically solves Maxwell’s equations in the
time domain on a spatial grid. Because of its computa-
tional efficiency, accuracy and direct physical interpreta-
tions, the FDTD method has become increasingly popular
for computations of electromagnetic wave propagation and
scattering problems and electromagnetic biological effects
[2]-[6], including the FDTD analysis of microwave cir-
cuits [7], [8].

Previous analytical techniques for hybrid circuits (dis-
tributed electromagnetic systems with lumped elements)
have used equivalent circuits or have combined different
numerical methods to analyze lumped-element or semi-
conductor devices in a distributed system [9]-[14]. For
example, for a nonuniform transmission line loaded with
lumped elements equivalent transformations or equivalent
circuits have been employed [11]-[13]. The transmission
line matrix (TLM) method [15], [16], which simulates the
wave propagation by an equivalent circuit based on Huy-
gen’s principle, is another popular numerical method.
Comparisons between the FDTD and TLM methods are
reported in [7], [17] and [18], with the general conclusion
that the two methods, although based upon different mod-
eling philosophies, are similar in several respects, and can
be considered to be complementary; both utilize meshes
and a time-domain approach. Voelker and Lomax [14]
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combined the TLM method with the FDTD method to gain
the advantages of both methods for a semiconductor prob-
lem including both lumped elements and nonlinear de-
vices. The TLM method has also been employed in a mi-
crowave field simulator formulated to be particularly user-
friendly [19], similar to microwave circuit CAD packages
which are being developed to meet the increasing demand
for all-purpose CAD tools [19]-[21].

This paper extends the two-dimensional finite-differ-
ence time-domain (FDTD) numerical analysis technique
to include hybrid systems, such as microwave circuits with
lumped capacitors, inductors and diodes mixed with strip
lines or radiating elements {22]-[25]. and discrete sources
with antennas such as hyperthermia applicators for cancer
therapy [26]. The formulation includes calculation of
driving-point impedance, which is often needed for
impedance matching.

A brief review of the conventional FDTD method is
followed by a derivation of the relationships between the
E and H fields and the voltages and currents that are used
to extend the general equations to include lumped ele-
ments inside the grid. Both R, L, and C lumped elements
and discrete voltage and current sources with internal
impedance are modeled; by specifying the appropriate
I-V characteristics of the sources and elements, both pas-
sive and active, linear and nonlinear circuit elements, can
be treated. Several test cases are analyzed by this method
and the results compared with analytical solutions or the
results of SPICE to verify the validity of the technique.
To demonstrate the capability of the method, diodes and
transistors connected to transmission lines are analyzed
and the results from the extended FDTD method are com-
pared with those from SPICE. The transmission line con-
figurations are chosen for the comparisons because ana-
lytic solutions for these cases are easily obtained, but the
method developed here applies to more complex config-
urations as well. Some considerations of the extended
method are then discussed. Finally, prospective applica-
tions and future development of the method are discussed.

II. FDTD FORMULATIONS WITH LUMPED ELEMENTS

Since the FDTD method has been discussed exten-
sively in the literature [27], the two-dimensional FDTD
iteration equations are stated (but not derived), and used
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as the basis for extending the method to include lumped
elements. The extension is based upon the derivation of
the FDTD equations from the integral form of Maxwell’s
equations.

A. Conventional FDTD Method

The standard FDTD equations may be derlved by in-
tegrating Maxwell’s equations:
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appropriately on a Yee cell to obtain the iteration equa-
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In (3)-(5), 4l is the length of a side of the square cell of
the grid, e is the permittivity and ¢ the conductivity. &¢ is
the time interval of each iteration time step which is de-
termined by

ol

ot
: F Cmax

]

(6)

where F = +/2 for stability in the two-dimensional prob-
lem [2] and ¢, is the maximum speed of the electro-
magnetic wave inside the grid. Note that to derive (4) and
(5) from (2), the E term in the current density J, has been
taken as a forward time average, i.e., J* = o(E"'! +
E")/2, to avoid an instability problem in the FDTD it-
eration equation when the conductivity of the medium (o)
becomes very large.

The locations and orientations of the E and H field com-
ponents are shown for a typical two-dimensional unit cell
of the grid (the Yee cell) in Fig. 1. We have used Mur’s
first-order absorbing boundaty conditions [28] at the outer
edges of the grid, which have been shown to provide rea-
sonable accuracy in previous investigations [8], [26].

B. The Extended FDTD Method

Lumped elements may be accounted for in Maxwell’s
equations by starting with the interpretation that in (2),
the right-hand side is the total integrated current density
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Fig. 1. Two-dimensional FDTD unit cell (Yee cell) at position (i, /).
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Fig. 2. Interpretation of a lumped element in an FDTD cell pair. (a) Illus-
tration of the integral contour and field components. (b) Position of the
lumped element and the retated voltage. (c) Example for modeling a volt-
age source with internal resistor. .

through a surface, which is the sum of the conduction.cur-
rent {;J. - dS and the displacement current f,(3E /r) -
dS. This total current is related by (2) to the H field in-
tegrated over the corresponding contour. An example of
such a contour and surface for the finite-difference for-
mulation is shown in Fig. 2(a). The contour abcda is in
the x-z plane. In this two-dimensional formulation, the
length ab in the z direction is arbitrary, since all functions
do not vary with z, and since the currents in the x and y
directions are defined as currents per unit z length. For
the contour shown in Flg 2(a), the total current on the
right-hand side of (2) is the integral of the current densi-
ties over the area of the surface between the two adjacent
H-field components, shown as a shaded surface com-
prised of S; and S; , | in the figure. The conduction current
per unit length is thus given by



726 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO 4, APRIL 1992

ol ol
Icy = ai,]EVi+1,j E' + Gi+l,jE_\'l+1,_] _2_
01, + 0,41,
- <—-’-—2———’> SIE, ¢ 1. (7

Note that the conduction current is proportional to the av-
erage conductivity times the electric field. Similarly, the
displacement current per unit length is given by
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The currents in (7) and (8) are currents per unit length in
z, with units of A/m. Using the classical definition of
potential difference of point 1 with respect to point 2,

1
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y
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with the polarity as shown in Fig. 2(b). With this defini-
tion, (7) and (8) can be written as
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are the average conductance per unit length and average
capacitance per unit length, respectively. Similar rela-
tions can be written for currents in the x direction.

With these relations, (2) can be extended to include
lumped elements by adding I, the current through the
lumped element, to the right-hand side of (2). For the ex-
ample shown in Fig. 2(a), this results in

Hz:./ - Hll+l,j = Iy = Ily + Icy + Ia’y (15)

where I;, is the current per unit length through the lumped
element and I, and I, are the conduction and displace-
ment currents per unit length as given by (11) and (12).
The lumped element is assumed to be two-dimensional
(no variation in the z direction) and thin enough in the x
direction that it can be considered lumped, as indicated in
Fig. 2(b).

When a lumped element whose current/voltage rela-
tionships are given by the general forms 7, = f.(V,) and
I, = f,(V,) is connected between cells (7, j) and (i + 1,
J) in Fig. 2, the finite-difference expressions (4) and (5)
for those two cells become:
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where, depending upon the functions f,(+) and f,(*) de-
termined by the I-V relations of the lumped element(s) to
be modeled, the above equations correspond to the finite-
difference approximations to linear, integral, differential
equations or their combination.

Equations (16) are general expressions for modeling any
lumped element or combination of lumped elements
within an FDTD cell pair. Since there is no limitation on
the I-V relations of the lumped element(s), i.e., the func-
tions f (V) in (16), it appears to be possible to model any
component, linear or nonlinear, in the FDTD grid.

Note that the lumped element is connected in *‘paral-
lel’” with the cell while the original displacement and con-
duction current of the cell remains; i.e., the lumped ele-
ment does not replace the cell contents, since the current
calculated by (15) is the fotal current, conduction current
and displacement current of the medium plus the lumped-
element current, flowing through the cross section en-
closed by the contour abeda in Fig. 2. In other words, the
lumped element is treated as ‘‘sizeless’” compared with
the cell size, which requires, of course, that the lumped
element is physically small compared to a cell.

Equations (16) include two components of the function
f (), allowing for the possibility that the current in the
Iumped element has two components, namely in the x and
y directions. Often one direction of the current dominates
for cells connected with lumped elements.

C. Modeling of R, L, C Elements

The lumped resistor, inductor or capacitor can be mod-
eled easily by substituting into (16) the appropriate I-V
relations for each component. In finite-difference terms,
these relations take the following forms (for y-directed
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current) for the resistor, inductor, and capacitor, respec-
tively:

6I(E;it-ll,j + Elyiv1,)
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where R, L, and C are given per unit length, and zero
values are assumed for both inductor current and capaci-
tor voltage at time zero.

Forward time averages have been taken in the above
equations to be consistent with the treatment of the con-
ductance current in Section II-A. Also, if no time aver-
aging is used for the currents, the forward-difference form
of the difference equations (16) will lead to instabilities
for certain values of R (we have found that a backward-
difference form must be implemented to avoid instabilities
if no time averaging is used).
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D. Modeling of Discrete Sources

When a discrete source such as a voltage source V with
internal series resistance R; is included in the y direction
in the cells, as shown in Fig. 2(c), the I-V relation of the

branch connected with voltage source and resistor can be .

written as V, = [,R, — V,, or in finite-difference form
" . 6I(E;t-:11] y1+lj) + 2Vn (18)
y+1,j 2Rs

A similar current/voltage equation can be derived for a
current source /; with an internal parallel conductance G;.

Then substituting (18) or the corresponding equation
for the current source into the FDTD iteration equation
(16b) for E, will give, respectively,
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Fig. 3. Modeling of a transistor in the FDTD grid. (a) Simplified equiva-
lent circuit of the transistor: there are n cells, n = 1, 2, - - -, between the
base and collector cells, as shown by the dashed line, which modifies the
fringing field effect. (b) Equivalent circuit for comparisons with the SPICE
calculation: the transistor (equivalent model enclosed by dashed box) 1s
connected in an infinitely long transmission line driven by a voltage source
and loaded by a resistor. ‘

When modeling a voltage source whose internal series
resistor R, equals zero, corresponding to an ideal voltage
source, the electric field is given directly from the source
voltage with no need for other terms; in this case (19a)
should be replaced by (10) with V, = —V,. When R, goes
to infinity, the voltage source branch becomes an open
circuit, and (19a) correctly reduces to (5). Similarly, when
modeling a current source, if the parallel conductance G;
goes to zero, corresponding to an ideal current source,
then (19b) reduces to (16b) with f(-) = 1.

E. Modeling of Active and Nonlinear Devices

An active device can also be modeled by a combination
of lumped elements, including dependent sources, in one
or more cells inside the grid. As an example, a transistor
can be modeled by the simplified equivalent circuit shown
in Fig. 3(a). The base and collector of the transistor are
modeled at two edges of separate cells; the collector cur-
rent is driven by the base-current-controlled current
source. To account for the effect of fringing fields be-
tween the base and collector in the transistor model, the
distance between the base and collector may be chosen to
be a varying number of cells as shown in Fig. 3(a). For
more advanced modeling, lumped-element capacitors may
be added in parallel to any branch.

Also, a nonlinear diode model may be included in the
FDTD calculations by using the diode equation:

I = ILe?/* — 1) (20)
I}

where k is Boltzmann’s constant, ¢ is the charge of an
electron, T is temperature in Kelvin, and V is the voltage
across the diode (which is related to E by (10)).

F. Calculation of Driving-Point Impedance

~ For any distribution system or hybrid system, the driv-
ing-point impedance Z at the source can be calculated
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when the system reaches the steady state by using the fol-
lowing equation:

_ Vo 2 ¢,

Iy 2 ¢,

where V, and I; are the magnitudes of the driving-point

voltage and current, and ¢, and ¢, are their phases, for

the cell that contains the excitation source, as calculated
from (10) and (15).

@1

III. ComprarisoNs OF FDTD witH TRANSMISSION-LINE
THEORY AND SPICE

To verify the method, we compared FDTD calculations
with analytical solutions or results from SPICE for a two-
ended parallel-plate transmission line with various lumped
elements connected either at the source or as a load. This
general configuration is chosen because analytical solu-
tions for it are available, and because it can include the
effects of multiple refiections and interference between the
incident and reflected waves. Unwanted radiation into free
space, which would be included in the FDTD results but
which would unduly complicate the analytical analysis,
are eliminated by selecting a closed transmission system.

Of the many calculations we have done, we present four
that typify the agreement between FDTD results and an-
alytical or SPICE results. The following parameters were
used in the FDTD calculations: cell size was 1 cm square;
all excitation signals were sinusoidal waves, V(1) = V,
sin (wf) or I, (t) = I, sin (wt), where ¥, and I, are the
magnitudes of the excitations; and the frequency was 200
MHz. The separation distance between the two transmis-
sion-line plates was 2 cm (two cells) and the line was air-
spaced, so the characteristic impedance of the transmis-
sion line was Z; = 7.5347 Q and only the electromagnetic
TEM mode was present. The time increment used for all
FDTD results was 6t = 16.667 ps, according to (6) with
F = 2. The infinitely long transmission line was simu-
lated by placing Mur’s first order absorbing boundary
conditions [28] at both ends of a 200-cell long transmis-
sion line. Both the FDTD numerical computations and the
SPICE simulations were done on an HP 9000 computer
system. The derivations of the analytical solutions for the
test models can be found in [29].

Fig. 4 shows the transmission line configuration used
for several of the comparison tests. When the load Z; in
Fig. 4 is an inductor, the current through the load, as cal-
culated by both FDTD and the analytical solution, is
shown in Fig. 5. The agreement between the two methods
is very good. The effect on the resulting load current from
reflections between the source and load can be clearly
seen; for this case the source resistance is zero.

Fig. 6 shows the excellent agreement between the
FDTD calculation and SPICE calculated currents in Z,
when Z, is a diode. For certain combinations of parame-
ters which cause the voltage across the diode to become
large, the exponential term in the diode I-V relationship
wil cause instabilities in the FDTD results, apparently due
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Fig. 4. One of the configurations for comparison calculations- infinite
transmission line loaded by a lumped element Z; (which can be R, L., C or
diode)
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Fig. 5. Load current through L, 1n Fig. 4 (inductor load) as calculated by
the FDTD method (solid line) and analytical solution (dashed line) with
parameters Vo = 1V, R, =0Q, L, =50 pH, and / = 0.4 m.

500X10_12‘1‘rv—r7'7‘l‘v—v—rrr11||u|HHHHIHIHHHHHV_!_:‘FT
FDTD —_—

450 | SPKE — — — b

400 1

. 350 r A
=

] 300 - q
o
&

5 250 | B
(o]

§ 200 -
4

= 150} i

100 i

50 | 4

o b Vs U b
0 200 400 600 800 1000
Time Step

Fig. 6. Current through a diode load (Fig. 4) as calculated by the FDTD
method (solid line) and SPICE simulation (dashed line) for the parameters
Vo=1V,R, =059Q,1=04m,T=300K, and I, = 107'* A. The two
lines are nearly coincident.

to the extremely large currents involved. In such high-
current cases, the exponential relationship (20) between
current and voltage is no longer physically meaningful,
and a modified linear I-V relationship would probably
avoid the instabilities, although we have not pursued this
modification.

Fig. 7 shows the FDTD results compared to SPICE cal-
culations for the current through a load resistor in the col-
lector/transmission-line circuit of the transistor configu-
ration shown in Fig. 3(b). The two techniques give very
similar results for the chosen set of model parameters.
When the base resistance is significantly increased above
the particular value chosen, however, the difference be-
tween the results of the two methods increases, probably
due to an increase in the base voltage and consequent in-
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Fig. 7. Current through a load resistor in the collector circuit of a transis-
tor-transmission line model (Fig. 3(b)) as calculated by the FDTD method
(solid line) and SPICE simulation (dashed line) for the parameters V, =
01V,R =200,R =25Q2,6=50,r,=240Q,r, = 10kQ, [, = 0.37
mand [, = 0.4 m. Also, there are three cells between the base and collector
in the FDTD model.

crease in the magnitude of the fringing fields between the
base and the collector; these fields are included in the
FDTD analysis but not in the SPICE simulation. In a sim-
ilar fashion, when the base resistance becomes very small
(less than 100 Q), the FDTD technique exhibits large in-
stabilities, perhaps due to positive feedback via the fring-
ing fields between the collector and base. We have placed
an unphysical three-cell gap between the base and collec-
tor for the FDTD model in order to minimize the effect
of the fringing fields, as indicated in Fig. 3(a), but electric
field values in the region of the gap from the FDTD re-
sults show that coupling still exists. Studies using more
complex models, including shielding and variable gap
spacing, are needed to determine more clearly the role of
fringing fields in our transistor model.

A parallel-plate transmission-line model excited by a
voltage source with complex R-L-C impedance was also
analyzed by the FDTD method. The results using (21)
give a driving-point impedance value of 3.76 @, which is
very close to the theoretical value of Z,/2 = 3.7673 Q
(the factor of 2 being due to the double-ended nature of
the transmission line).

IV. DiscussioN oF RESULTS

Calculations presented in last section show that the
time-domain FDTD results are close to the analytical or
SPICE results; in fact most of the curves fit each other
within 1% relative error. Although our examples show
only source or load currents, currents and voltages at other
locations have also been checked and found to be accurate
to approximately the same degree. Other configurations
were tested using the method, and excellent agreement
with analytical and/or SPICE results was obtained. These
results illustrate the potential usefulness of the extended
FDTD method for hybrid system analysis.

One interesting phenomenon we have observed during
this study is the occurrence of small ‘‘early signals,”’ i.e.,
the arrival of low-amplitude waves traveling at speeds

faster than the actual speed of the electromagnetic waves
in the transmission line. The magnitudes of these early
field components are very small compared to the eventual
signal strengths, and therefore they have little effect on
the final results. One possible explanation of this phenom-
enon is that, since the selection of 6z in FDTD must sat-
isfy the stability requirement given by (6), the electro-
magnetic values in the numerical iterations travel twice as
fast as in the real wave (when F in (6) equals 2).

Because of the half-cell offset between the E and H field
components for each cell as shown in Fig. 1, the positions
for calculating the analytical source current in the trans-
mission line must also be offset by one half cell from the
source position (z = 0). Ignoring the half-cell offset causes
significantly larger differences between the FDTD and the
analytic results. This is consistent with the interpretation
in Fig. 2(b) in which the current through the surface is
related to the two magnetic field components at the center
of the nearby cells.

By the nature of the calculation of the current through
each cell pair (Fig. 2(b)) in the FDTD technique, these
currents include both the lumped-element current and the
displacement current through the medium contained in the
cells (and conduction current if the medium is lossy).
Therefore, the displacement current due to the cell’s me-
dium must be subtracted from the total FDTD current to
obtain a comparison with the analytic solution (which
gives the current only through the lumped element). This
displacement current is usually small, and becomes an ap-
preciable factor only for very large impedance loads.

In this paper, the perfectly conducting metal walls of
the transmission line are modeled by cells with very high
conductivity in the FDTD grid. Sheen et al [8] simulated
the perfect conductor by setting the tangential electric field
components to zero and assuming the conductor to be of
zero thickness. Combining the lumped-element modeling
technique in this paper with Sheen’s method for metal
modeling may be a way to handle configurations where
the thickness of the conductor layer is very small (like a
microstrip line or thin film) without having to make the
cell size correspondingly small. .

In principle, there is no upper frequency bound for
FDTD calculations as long as the cell size is kept small
enough compared with the wavelength (usually one-tenth
of the wavelength) to give adequate spatial resolution. The
FDTD method has been used in the analysis of optical
waveguides operating with frequencies higher than 10*Hz
[30]. From the lumped-element point of view, lumped
elements have been modeled in X-band [24], [31] and re-
cently up to 18 GHz [21].

V. CONCLUSION

We have developed a method for analyzing hybrid elec-
tromagnetic systems by extending the FDTD equations,
and have verified its accuracy for several test cases. The
extended FDTD method should prove useful in the design
and analysis of complicated systems with various electri-
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cal components such as active, passive, linear and nonlin-
ear lumped elements.

The straightforward extension of this technique to three-
dimensional systems is anticipated. It also seems possible
to extract the S-parameters of the electromagnetic system
by this method, or reciprocally, to analyze a system using
its S-parameter descriptions. Implementing more compli-
cated device models or equivalent circuits should give
more accurate simulations of real systems. For example,
noise sources might be included in the equivalent FDTD
circuit to simulate random or thermal noise in the system
to determine its noise parameters.
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